Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
G
genbecle
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 6
    • Issues 6
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Danilo Lepage
  • genbecle
  • Issues
  • #6

Closed
Open
Opened Apr 09, 2025 by Danilo Lepage@danilolepage6
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, in addition to the distilled variations varying from 1.5 to 70 billion specifications to develop, experiment, and properly scale your generative AI concepts on AWS.

In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled variations of the models as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that utilizes reinforcement discovering to enhance thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. An essential differentiating feature is its reinforcement knowing (RL) action, which was utilized to improve the design's responses beyond the basic pre-training and tweak procedure. By including RL, DeepSeek-R1 can adjust more successfully to user feedback and goals, eventually boosting both significance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) technique, suggesting it's equipped to break down intricate queries and reason through them in a detailed way. This assisted thinking procedure allows the design to produce more accurate, transparent, and detailed responses. This model integrates RL-based fine-tuning with CoT abilities, aiming to generate structured responses while concentrating on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has captured the industry's attention as a versatile text-generation design that can be integrated into numerous workflows such as agents, sensible reasoning and data interpretation jobs.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture permits activation of 37 billion parameters, making it possible for effective inference by routing inquiries to the most appropriate expert "clusters." This technique permits the model to focus on various issue domains while maintaining total efficiency. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the design. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning capabilities of the main R1 model to more efficient architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller, more effective models to mimic the behavior and reasoning patterns of the larger DeepSeek-R1 design, utilizing it as an instructor model.

You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend deploying this model with guardrails in location. In this blog, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid harmful material, and assess models against crucial safety criteria. At the time of writing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce multiple guardrails tailored to different use cases and use them to the DeepSeek-R1 design, improving user experiences and standardizing safety controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you need access to an ml.p5e circumstances. To if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To ask for a limit boost, produce a limit increase demand and gratisafhalen.be reach out to your account team.

Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) consents to use Amazon Bedrock Guardrails. For directions, see Establish approvals to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to introduce safeguards, avoid harmful content, and assess models against crucial safety criteria. You can carry out safety procedures for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This enables you to use guardrails to assess user inputs and model responses deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The general circulation includes the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for reasoning. After getting the design's output, another guardrail check is used. If the output passes this last check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following areas demonstrate reasoning utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, pick Model catalog under Foundation models in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to invoke the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a supplier and pick the DeepSeek-R1 model.

The design detail page provides important details about the design's abilities, prices structure, and implementation guidelines. You can discover detailed usage instructions, consisting of sample API calls and code snippets for combination. The model supports various text generation jobs, consisting of content production, code generation, and concern answering, utilizing its reinforcement discovering optimization and CoT reasoning capabilities. The page likewise includes release choices and licensing details to help you begin with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, choose Deploy.

You will be prompted to set up the implementation details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of circumstances, enter a number of circumstances (in between 1-100). 6. For example type, select your circumstances type. For optimum efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended. Optionally, you can set up sophisticated security and infrastructure settings, including virtual private cloud (VPC) networking, service function authorizations, and file encryption settings. For many utilize cases, the default settings will work well. However, for production releases, you might wish to examine these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to begin utilizing the model.

When the implementation is total, you can test DeepSeek-R1's abilities straight in the Amazon Bedrock playground. 8. Choose Open in playground to access an interactive interface where you can try out various prompts and adjust design parameters like temperature level and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimal results. For example, material for inference.

This is an exceptional method to check out the design's thinking and text generation abilities before integrating it into your applications. The play ground provides instant feedback, helping you comprehend how the design reacts to numerous inputs and letting you fine-tune your triggers for optimal outcomes.

You can rapidly test the design in the playground through the UI. However, to conjure up the released design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run reasoning using guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to carry out reasoning utilizing a deployed DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have produced the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime client, configures reasoning specifications, and sends out a request to produce text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML options that you can deploy with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and deploy them into production using either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart offers two practical approaches: utilizing the user-friendly SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both approaches to help you choose the method that best fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The design internet browser shows available designs, with details like the company name and design abilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 design card. Each design card shows crucial details, consisting of:

- Model name

  • Provider name
  • Task classification (for example, Text Generation). Bedrock Ready badge (if appropriate), suggesting that this design can be signed up with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to invoke the model

    5. Choose the model card to see the model details page.

    The design details page includes the following details:

    - The design name and service provider details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab consists of essential details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage standards

    Before you deploy the design, it's suggested to review the model details and license terms to verify compatibility with your use case.

    6. Choose Deploy to proceed with release.

    7. For Endpoint name, use the instantly generated name or produce a custom one.
  1. For Instance type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, get in the variety of circumstances (default: 1). Selecting suitable instance types and counts is vital for expense and efficiency optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for precision. For this model, we strongly suggest adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
  4. Choose Deploy to deploy the model.

    The deployment procedure can take a number of minutes to complete.

    When implementation is total, your endpoint status will change to InService. At this moment, the design is all set to accept inference requests through the endpoint. You can keep an eye on the release progress on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the implementation is complete, you can invoke the design using a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To get started with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the essential AWS permissions and environment setup. The following is a detailed code example that demonstrates how to release and utilize DeepSeek-R1 for inference programmatically. The code for releasing the model is provided in the Github here. You can clone the note pad and run from SageMaker Studio.

    You can run extra demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail using the Amazon Bedrock console or the API, and implement it as shown in the following code:

    Tidy up

    To prevent unwanted charges, complete the actions in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you released the design utilizing Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace deployments.
  5. In the Managed deployments area, find the endpoint you desire to erase.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're deleting the right release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain costs if you leave it running. Use the following code to erase the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and release the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting started with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business develop ingenious options using AWS services and accelerated compute. Currently, he is focused on developing strategies for fine-tuning and enhancing the inference performance of large language models. In his spare time, Vivek delights in treking, enjoying films, and trying different cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads product, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about constructing options that help consumers accelerate their AI journey and unlock company value.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
0
Labels
None
Assign labels
  • View project labels
Reference: danilolepage6/genbecle#6