Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
C
clikviewstorage
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 6
    • Issues 6
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Arnoldo Curr
  • clikviewstorage
  • Issues
  • #5

Closed
Open
Opened Apr 07, 2025 by Arnoldo Curr@arnoldocurr957
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are excited to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, together with the distilled versions varying from 1.5 to 70 billion specifications to construct, experiment, and properly scale your generative AI concepts on AWS.

In this post, we show how to begin with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to deploy the distilled versions of the designs as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language model (LLM) developed by DeepSeek AI that utilizes reinforcement learning to enhance reasoning abilities through a multi-stage training process from a DeepSeek-V3-Base foundation. A crucial differentiating feature is its support learning (RL) step, which was used to fine-tune the design's responses beyond the basic pre-training and fine-tuning procedure. By incorporating RL, DeepSeek-R1 can adjust more efficiently to user feedback and goals, ultimately boosting both relevance and clearness. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) method, suggesting it's geared up to break down intricate questions and factor through them in a detailed manner. This assisted thinking process allows the model to produce more accurate, transparent, and detailed answers. This model integrates RL-based fine-tuning with CoT abilities, aiming to produce structured responses while concentrating on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has actually recorded the industry's attention as a flexible text-generation model that can be integrated into different workflows such as agents, logical reasoning and data analysis jobs.

DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture allows activation of 37 billion parameters, making it possible for efficient inference by routing questions to the most appropriate professional "clusters." This method permits the design to focus on various problem domains while maintaining total performance. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to release the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning capabilities of the main R1 design to more effective architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more effective models to mimic the behavior and thinking patterns of the larger DeepSeek-R1 design, using it as a teacher design.

You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest deploying this design with guardrails in location. In this blog, we will utilize Amazon Bedrock Guardrails to introduce safeguards, prevent damaging material, and assess models against crucial security criteria. At the time of writing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can create numerous guardrails tailored to various use cases and use them to the DeepSeek-R1 model, enhancing user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you require access to an ml.p5e instance. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To request a limitation increase, develop a limit increase request and reach out to your account group.

Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) approvals to utilize Amazon Bedrock Guardrails. For directions, see Set up permissions to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to introduce safeguards, prevent hazardous content, and assess models against crucial security criteria. You can execute security procedures for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to examine user inputs and design actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The general flow includes the following actions: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for inference. After getting the model's output, another guardrail check is used. If the output passes this last check, it's returned as the outcome. However, if either the input or output is stepped in by the guardrail, a message is returned suggesting the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following sections show inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, select Model catalog under Foundation designs in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to conjure up the design. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and choose the DeepSeek-R1 design.

The design detail page offers important details about the design's capabilities, prices structure, and execution guidelines. You can discover detailed use guidelines, consisting of sample API calls and code snippets for integration. The design supports different text generation tasks, consisting of content creation, code generation, and concern answering, using its reinforcement discovering optimization and CoT thinking capabilities. The page likewise includes release choices and licensing details to assist you start with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, 89u89.com select Deploy.

You will be prompted to set up the deployment details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of circumstances, get in a number of circumstances (between 1-100). 6. For Instance type, choose your circumstances type. For ideal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised. Optionally, you can configure sophisticated security and infrastructure settings, consisting of virtual personal cloud (VPC) networking, service role permissions, and file encryption settings. For most use cases, the default settings will work well. However, for production implementations, you may wish to review these settings to align with your organization's security and compliance requirements. 7. Choose Deploy to begin using the design.

When the release is complete, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock playground. 8. Choose Open in play ground to access an interactive interface where you can try out various prompts and adjust design parameters like temperature and maximum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimum results. For instance, content for inference.

This is an excellent way to explore the model's thinking and text generation capabilities before incorporating it into your applications. The play ground supplies instant feedback, helping you understand how the model reacts to numerous inputs and letting you fine-tune your triggers for optimum outcomes.

You can rapidly test the model in the play ground through the UI. However, to conjure up the released model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run reasoning utilizing guardrails with the deployed DeepSeek-R1 endpoint

The following code example shows how to carry out reasoning utilizing a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually produced the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime client, sets up reasoning parameters, and sends a demand to generate text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML solutions that you can deploy with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart offers 2 convenient approaches: using the intuitive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's explore both approaches to help you pick the approach that best fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to deploy DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be prompted to create a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The model browser displays available designs, with details like the supplier name and design abilities.

4. Look for DeepSeek-R1 to see the DeepSeek-R1 design card. Each design card shows essential details, including:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if relevant), showing that this model can be registered with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to invoke the design

    5. Choose the model card to see the model details page.

    The design details page includes the following details:

    - The model name and company details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab consists of important details, such as:

    - Model description.
  • License details. - Technical requirements.
  • Usage guidelines

    Before you deploy the model, it's advised to review the model details and license terms to verify compatibility with your use case.

    6. Choose Deploy to continue with deployment.

    7. For Endpoint name, utilize the automatically created name or develop a customized one.
  1. For example type ¸ select an instance type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, go into the variety of circumstances (default: 1). Selecting proper instance types and counts is essential for expense and efficiency optimization. Monitor your implementation to adjust these settings as needed.Under Inference type, Real-time inference is picked by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for precision. For this design, we highly recommend sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to deploy the model.

    The release procedure can take numerous minutes to finish.

    When deployment is total, your endpoint status will alter to InService. At this point, the model is ready to accept reasoning demands through the endpoint. You can keep track of the implementation development on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the release is complete, you can conjure up the design using a SageMaker runtime client and integrate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To get going with DeepSeek-R1 using the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the needed AWS authorizations and environment setup. The following is a detailed code example that shows how to release and utilize DeepSeek-R1 for inference programmatically. The code for deploying the model is provided in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run extra demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Clean up

    To avoid unwanted charges, finish the steps in this section to tidy up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you deployed the model utilizing Amazon Bedrock Marketplace, complete the following actions:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace implementations.
  5. In the Managed deployments section, find the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're erasing the right deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you deployed will sustain expenses if you leave it running. Use the following code to erase the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and release the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business develop ingenious services using AWS services and accelerated compute. Currently, he is focused on for fine-tuning and enhancing the reasoning performance of large language designs. In his complimentary time, Vivek enjoys treking, viewing motion pictures, and attempting different cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about building solutions that help customers accelerate their AI journey and unlock business value.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
0
Labels
None
Assign labels
  • View project labels
Reference: arnoldocurr957/clikviewstorage#5