DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled variations varying from 1.5 to 70 billion criteria to develop, experiment, and properly scale your generative AI ideas on AWS.
In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to deploy the distilled variations of the models as well.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language design (LLM) developed by DeepSeek AI that utilizes support discovering to enhance thinking abilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A crucial distinguishing function is its support learning (RL) action, which was used to improve the model's reactions beyond the standard pre-training and tweak procedure. By incorporating RL, DeepSeek-R1 can adapt more successfully to user feedback and goals, eventually boosting both relevance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) method, indicating it's geared up to break down complicated queries and reason through them in a detailed way. This guided reasoning process allows the design to produce more precise, transparent, and detailed answers. This model combines RL-based fine-tuning with CoT abilities, aiming to generate structured responses while concentrating on interpretability and user interaction. With its extensive abilities DeepSeek-R1 has caught the market's attention as a flexible text-generation model that can be incorporated into numerous workflows such as agents, rational reasoning and information analysis tasks.
DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture permits activation of 37 billion specifications, allowing efficient inference by routing questions to the most relevant expert "clusters." This approach enables the model to specialize in different problem domains while maintaining general effectiveness. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge instance to deploy the design. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the thinking capabilities of the main R1 design to more efficient architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). to a process of training smaller sized, more effective designs to mimic the behavior and thinking patterns of the bigger DeepSeek-R1 design, utilizing it as a teacher design.
You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest deploying this design with guardrails in location. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, prevent harmful material, and examine models against essential safety requirements. At the time of writing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create multiple guardrails tailored to various usage cases and apply them to the DeepSeek-R1 model, wiki.whenparked.com improving user experiences and standardizing security controls throughout your generative AI applications.
Prerequisites
To release the DeepSeek-R1 design, you require access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To request a limit increase, produce a limitation increase request and reach out to your account team.
Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For directions, see Set up permissions to utilize guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails enables you to present safeguards, prevent damaging material, and examine models against crucial safety requirements. You can execute precaution for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to examine user inputs and model actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.
The general flow includes the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for inference. After getting the model's output, another guardrail check is used. If the output passes this last check, it's returned as the outcome. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it took place at the input or output phase. The examples showcased in the following sections demonstrate reasoning utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:
1. On the Amazon Bedrock console, choose Model brochure under Foundation models in the navigation pane.
At the time of composing this post, you can use the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a supplier and select the DeepSeek-R1 model.
The design detail page supplies important details about the design's abilities, prices structure, and implementation standards. You can find detailed usage guidelines, including sample API calls and code bits for integration. The design supports different text generation tasks, consisting of content development, code generation, and question answering, utilizing its reinforcement learning optimization and CoT thinking abilities.
The page likewise includes deployment alternatives and licensing details to help you get going with DeepSeek-R1 in your applications.
3. To begin utilizing DeepSeek-R1, pick Deploy.
You will be triggered to configure the release details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters).
5. For Number of instances, enter a number of instances (in between 1-100).
6. For Instance type, choose your instance type. For ideal efficiency with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised.
Optionally, you can set up innovative security and infrastructure settings, consisting of virtual personal cloud (VPC) networking, service role permissions, and file encryption settings. For most use cases, the default settings will work well. However, for production releases, you might desire to examine these settings to align with your company's security and compliance requirements.
7. Choose Deploy to start using the design.
When the implementation is total, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock playground.
8. Choose Open in play area to access an interactive interface where you can experiment with various prompts and change design criteria like temperature level and maximum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for ideal outcomes. For example, material for reasoning.
This is an outstanding way to explore the model's reasoning and text generation capabilities before incorporating it into your applications. The play area supplies immediate feedback, helping you understand how the model reacts to numerous inputs and letting you fine-tune your prompts for optimum results.
You can quickly check the design in the play area through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run inference utilizing guardrails with the released DeepSeek-R1 endpoint
The following code example shows how to perform inference using a deployed DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually created the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime client, configures reasoning parameters, and sends a request to create text based on a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML solutions that you can deploy with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your data, and release them into production using either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart uses 2 convenient techniques: utilizing the intuitive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both methods to assist you pick the method that finest fits your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to deploy DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, choose Studio in the navigation pane.
2. First-time users will be triggered to develop a domain.
3. On the SageMaker Studio console, select JumpStart in the navigation pane.
The design internet browser displays available models, with details like the service provider name and model capabilities.
4. Search for DeepSeek-R1 to view the DeepSeek-R1 model card.
Each model card shows essential details, consisting of:
- Model name
- Provider name
- Task category (for example, Text Generation).
Bedrock Ready badge (if suitable), showing that this model can be signed up with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to invoke the model
5. Choose the design card to view the design details page.
The model details page includes the following details:
- The design name and provider details. Deploy button to release the design. About and Notebooks tabs with detailed details
The About tab consists of crucial details, such as:
- Model description. - License details.
- Technical specifications.
- Usage standards
Before you deploy the design, it's suggested to review the design details and license terms to confirm compatibility with your use case.
6. Choose Deploy to proceed with implementation.
7. For Endpoint name, use the immediately created name or create a custom-made one.
- For Instance type ¸ select a circumstances type (default: ml.p5e.48 xlarge).
- For Initial circumstances count, go into the number of circumstances (default: 1). Selecting appropriate instance types and counts is crucial for expense and performance optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time inference is picked by default. This is optimized for sustained traffic and low latency.
- Review all configurations for accuracy. For this model, we highly advise adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
- Choose Deploy to release the design.
The implementation procedure can take numerous minutes to complete.
When release is total, your endpoint status will change to InService. At this point, the model is all set to accept inference demands through the endpoint. You can keep an eye on the deployment development on the SageMaker console Endpoints page, which will show pertinent metrics and status details. When the deployment is complete, you can invoke the design using a SageMaker runtime client and incorporate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To get begun with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the necessary AWS consents and environment setup. The following is a detailed code example that shows how to release and use DeepSeek-R1 for inference programmatically. The code for deploying the model is provided in the Github here. You can clone the notebook and range from SageMaker Studio.
You can run additional requests against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and execute it as shown in the following code:
Tidy up
To avoid unwanted charges, finish the steps in this section to clean up your resources.
Delete the Amazon Bedrock Marketplace implementation
If you deployed the design utilizing Amazon Bedrock Marketplace, complete the following actions:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, select Marketplace implementations. - In the Managed releases area, locate the endpoint you desire to delete.
- Select the endpoint, and on the Actions menu, choose Delete.
- Verify the endpoint details to make certain you're deleting the correct deployment: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to erase the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and deploy the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get started. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies build innovative options using AWS services and sped up compute. Currently, he is focused on developing methods for fine-tuning and optimizing the inference performance of big language models. In his leisure time, Vivek takes pleasure in hiking, viewing movies, and attempting different foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is a Professional Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads item, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about developing services that help consumers accelerate their AI journey and unlock business value.