Artificial General Intelligence
Artificial basic intelligence (AGI) is a kind of synthetic intelligence (AI) that matches or exceeds human cognitive capabilities across a wide variety of cognitive jobs. This contrasts with narrow AI, which is restricted to particular jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that considerably exceeds human cognitive capabilities. AGI is thought about among the definitions of strong AI.
Creating AGI is a main goal of AI research and of business such as OpenAI [2] and Meta. [3] A 2020 survey recognized 72 active AGI research study and development tasks across 37 nations. [4]
The timeline for attaining AGI stays a topic of continuous debate amongst researchers and specialists. As of 2023, some argue that it might be possible in years or decades; others preserve it might take a century or longer; a minority believe it may never be attained; and another minority declares that it is currently here. [5] [6] Notable AI researcher Geoffrey Hinton has actually expressed issues about the quick development towards AGI, recommending it could be achieved quicker than numerous anticipate. [7]
There is argument on the precise definition of AGI and concerning whether modern big language designs (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a common topic in sci-fi and futures studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many experts on AI have stated that reducing the threat of human extinction postured by AGI must be an international concern. [14] [15] Others discover the development of AGI to be too remote to provide such a threat. [16] [17]
Terminology
AGI is also referred to as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or general intelligent action. [21]
Some academic sources schedule the term "strong AI" for computer system programs that experience life or consciousness. [a] On the other hand, weak AI (or narrow AI) is able to fix one specific problem but lacks basic cognitive capabilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the same sense as humans. [a]
Related concepts include synthetic superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical type of AGI that is a lot more generally intelligent than human beings, [23] while the notion of transformative AI connects to AI having a large influence on society, for example, comparable to the agricultural or commercial transformation. [24]
A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind researchers. They define five levels of AGI: emerging, qualified, professional, virtuoso, and superhuman. For instance, a skilled AGI is specified as an AI that surpasses 50% of skilled grownups in a vast array of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise specified however with a threshold of 100%. They consider large language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have actually been proposed. One of the leading proposals is the Turing test. However, there are other well-known definitions, and some scientists disagree with the more popular methods. [b]
Intelligence characteristics
Researchers normally hold that intelligence is required to do all of the following: [27]
reason, usage technique, fix puzzles, and make judgments under unpredictability
represent understanding, consisting of sound judgment understanding
plan
find out
- communicate in natural language
- if necessary, incorporate these abilities in completion of any given goal
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and choice making) think about extra qualities such as imagination (the capability to form novel mental images and concepts) [28] and autonomy. [29]
Computer-based systems that show numerous of these capabilities exist (e.g. see computational imagination, automated reasoning, decision assistance system, robot, evolutionary calculation, intelligent representative). There is dispute about whether contemporary AI systems possess them to a sufficient degree.
Physical traits
Other abilities are considered preferable in intelligent systems, as they may impact intelligence or help in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, etc), and - the ability to act (e.g. relocation and control things, modification location to explore, and so on).
This consists of the capability to detect and react to threat. [31]
Although the ability to sense (e.g. see, hear, etc) and the ability to act (e.g. move and manipulate things, modification location to check out, and so on) can be preferable for some intelligent systems, [30] these physical capabilities are not strictly required for an entity to certify as AGI-particularly under the thesis that large language designs (LLMs) might currently be or become AGI. Even from a less positive perspective on LLMs, there is no firm requirement for an AGI to have a human-like kind; being a silicon-based computational system suffices, provided it can process input (language) from the external world in place of human senses. This analysis lines up with the understanding that AGI has actually never been proscribed a particular physical personification and therefore does not require a capacity for locomotion or conventional "eyes and ears". [32]
Tests for human-level AGI
Several tests suggested to validate human-level AGI have been thought about, consisting of: [33] [34]
The concept of the test is that the device has to attempt and pretend to be a man, by answering questions put to it, and it will only pass if the pretence is fairly convincing. A significant portion of a jury, who need to not be expert about devices, need to be taken in by the pretence. [37]
AI-complete problems
A problem is informally called "AI-complete" or "AI-hard" if it is thought that in order to resolve it, one would require to carry out AGI, because the option is beyond the capabilities of a purpose-specific algorithm. [47]
There are lots of problems that have actually been conjectured to need basic intelligence to solve along with humans. Examples consist of computer vision, natural language understanding, and handling unexpected situations while resolving any real-world issue. [48] Even a particular task like translation needs a maker to check out and compose in both languages, follow the author's argument (reason), understand the context (understanding), and consistently recreate the author's initial intent (social intelligence). All of these problems require to be solved all at once in order to reach human-level device performance.
However, a lot of these jobs can now be performed by modern-day large language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level performance on lots of benchmarks for checking out comprehension and visual thinking. [49]
History
Classical AI
Modern AI research study began in the mid-1950s. [50] The very first generation of AI researchers were convinced that synthetic general intelligence was possible which it would exist in just a few years. [51] AI pioneer Herbert A. Simon wrote in 1965: "devices will be capable, within twenty years, of doing any work a man can do." [52]
Their forecasts were the motivation for Stanley Kubrick and bphomesteading.com Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they might produce by the year 2001. AI pioneer Marvin Minsky was a specialist [53] on the task of making HAL 9000 as sensible as possible according to the consensus predictions of the time. He stated in 1967, "Within a generation ... the problem of producing 'expert system' will substantially be resolved". [54]
Several classical AI tasks, such as Doug Lenat's Cyc project (that started in 1984), and Allen Newell's Soar job, were directed at AGI.
However, in the early 1970s, it became obvious that researchers had actually grossly ignored the problem of the task. Funding companies became doubtful of AGI and put researchers under increasing pressure to produce helpful "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI goals like "continue a casual discussion". [58] In response to this and the success of professional systems, both industry and government pumped money into the field. [56] [59] However, self-confidence in AI spectacularly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never satisfied. [60] For the 2nd time in 20 years, AI scientists who forecasted the impending achievement of AGI had actually been mistaken. By the 1990s, AI researchers had a reputation for making vain promises. They became hesitant to make predictions at all [d] and prevented reference of "human level" artificial intelligence for worry of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI achieved industrial success and academic respectability by focusing on particular sub-problems where AI can produce proven results and industrial applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now utilized extensively throughout the innovation market, and research in this vein is greatly moneyed in both academia and market. As of 2018 [update], development in this field was thought about an emerging pattern, and a mature stage was expected to be reached in more than 10 years. [64]
At the turn of the century, many traditional AI researchers [65] hoped that strong AI could be established by combining programs that resolve numerous sub-problems. Hans Moravec composed in 1988:
I am confident that this bottom-up route to artificial intelligence will one day fulfill the conventional top-down route majority way, ready to provide the real-world proficiency and the commonsense understanding that has actually been so frustratingly elusive in thinking programs. Fully smart devices will result when the metaphorical golden spike is driven unifying the two efforts. [65]
However, even at the time, this was contested. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by mentioning:
The expectation has frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow fulfill "bottom-up" (sensory) approaches someplace in between. If the grounding considerations in this paper stand, then this expectation is hopelessly modular and there is truly only one viable route from sense to symbols: from the ground up. A free-floating symbolic level like the software application level of a computer will never be reached by this route (or vice versa) - nor is it clear why we should even attempt to reach such a level, given that it looks as if getting there would just amount to uprooting our symbols from their intrinsic meanings (consequently simply reducing ourselves to the functional equivalent of a programmable computer). [66]
Modern artificial general intelligence research study
The term "artificial basic intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a conversation of the implications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent maximises "the capability to please objectives in a large range of environments". [68] This kind of AGI, identified by the capability to maximise a mathematical meaning of intelligence rather than show human-like behaviour, [69] was likewise called universal synthetic intelligence. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary results". The very first summer school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and including a number of guest speakers.
As of 2023 [upgrade], a small number of computer system researchers are active in AGI research, and many contribute to a series of AGI conferences. However, significantly more scientists have an interest in open-ended knowing, [76] [77] which is the concept of permitting AI to continuously learn and innovate like humans do.
Feasibility
As of 2023, the advancement and possible accomplishment of AGI remains a topic of extreme argument within the AI community. While conventional agreement held that AGI was a far-off objective, current advancements have led some scientists and market figures to declare that early types of AGI may currently exist. [78] AI pioneer Herbert A. Simon hypothesized in 1965 that "devices will be capable, within twenty years, of doing any work a guy can do". This forecast failed to come real. Microsoft co-founder Paul Allen believed that such intelligence is not likely in the 21st century since it would need "unforeseeable and basically unpredictable breakthroughs" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf in between modern computing and human-level synthetic intelligence is as broad as the gulf between present space flight and useful faster-than-light spaceflight. [80]
A further difficulty is the absence of clarity in specifying what intelligence involves. Does it require consciousness? Must it show the capability to set goals in addition to pursue them? Is it purely a matter of scale such that if design sizes increase sufficiently, intelligence will emerge? Are centers such as preparation, thinking, and causal understanding required? Does intelligence require clearly replicating the brain and its specific faculties? Does it need feelings? [81]
Most AI scientists think strong AI can be attained in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of achieving strong AI. [82] [83] John McCarthy is among those who think human-level AI will be achieved, but that today level of progress is such that a date can not precisely be predicted. [84] AI professionals' views on the feasibility of AGI wax and wane. Four polls carried out in 2012 and 2013 recommended that the average quote amongst professionals for when they would be 50% confident AGI would show up was 2040 to 2050, depending upon the survey, with the mean being 2081. Of the specialists, 16.5% responded to with "never ever" when asked the very same concern but with a 90% self-confidence instead. [85] [86] Further present AGI development factors to consider can be found above Tests for verifying human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year timespan there is a strong predisposition towards anticipating the arrival of human-level AI as in between 15 and 25 years from the time the prediction was made". They examined 95 predictions made between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft researchers published a detailed examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, our company believe that it might fairly be seen as an early (yet still insufficient) version of an artificial basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 surpasses 99% of people on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a considerable level of general intelligence has actually already been attained with frontier models. They composed that unwillingness to this view originates from four primary reasons: a "healthy uncertainty about metrics for AGI", an "ideological dedication to alternative AI theories or methods", a "commitment to human (or biological) exceptionalism", or a "issue about the economic implications of AGI". [91]
2023 likewise marked the development of big multimodal models (big language designs efficient in processing or producing several modalities such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the very first of a series of designs that "invest more time thinking before they react". According to Mira Murati, this capability to think before responding represents a brand-new, extra paradigm. It improves model outputs by investing more computing power when producing the response, whereas the design scaling paradigm improves outputs by increasing the design size, training information and training calculate power. [93] [94]
An OpenAI employee, Vahid Kazemi, declared in 2024 that the business had attained AGI, mentioning, "In my opinion, we have actually already accomplished AGI and it's much more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "better than the majority of human beings at many tasks." He also attended to criticisms that large language models (LLMs) simply follow predefined patterns, comparing their knowing procedure to the clinical technique of observing, hypothesizing, and validating. These statements have actually sparked argument, as they rely on a broad and non-traditional definition of AGI-traditionally understood as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's models demonstrate remarkable versatility, they might not completely fulfill this standard. Notably, Kazemi's remarks came soon after OpenAI got rid of "AGI" from the terms of its partnership with Microsoft, triggering speculation about the company's strategic intentions. [95]
Timescales
Progress in expert system has historically gone through periods of rapid progress separated by periods when development appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software or both to create area for more development. [82] [98] [99] For instance, the hardware offered in the twentieth century was not enough to implement deep learning, which requires great deals of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel states that quotes of the time required before a really flexible AGI is developed vary from 10 years to over a century. Since 2007 [upgrade], the agreement in the AGI research community seemed to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was possible. [103] Mainstream AI scientists have provided a wide range of viewpoints on whether development will be this quick. A 2012 meta-analysis of 95 such viewpoints found a predisposition towards predicting that the start of AGI would take place within 16-26 years for modern-day and historical predictions alike. That paper has actually been slammed for how it classified viewpoints as expert or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competitors with a top-5 test mistake rate of 15.3%, considerably much better than the second-best entry's rate of 26.3% (the standard approach utilized a weighted amount of scores from different pre-defined classifiers). [105] AlexNet was considered as the preliminary ground-breaker of the present deep learning wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on publicly available and freely accessible weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ worth of about 47, which corresponds around to a six-year-old child in first grade. An adult comes to about 100 on average. Similar tests were brought out in 2014, with the IQ score reaching an optimum value of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language design capable of performing lots of diverse tasks without specific training. According to Gary Grossman in a VentureBeat short article, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]
In the very same year, Jason Rohrer used his GPT-3 account to establish a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI requested for modifications to the chatbot to abide by their security guidelines; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system efficient in carrying out more than 600 different tasks. [110]
In 2023, Microsoft Research published a research study on an early variation of OpenAI's GPT-4, competing that it exhibited more basic intelligence than previous AI designs and demonstrated human-level efficiency in tasks covering numerous domains, such as mathematics, coding, and law. This research study stimulated a dispute on whether GPT-4 could be considered an early, insufficient variation of synthetic basic intelligence, emphasizing the need for additional expedition and assessment of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton specified that: [112]
The concept that this stuff might actually get smarter than individuals - a couple of individuals thought that, [...] But many people believed it was way off. And I believed it was way off. I thought it was 30 to 50 years and even longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis likewise stated that "The development in the last couple of years has been quite unbelievable", and that he sees no reason it would decrease, anticipating AGI within a years or perhaps a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within 5 years, AI would can passing any test at least as well as human beings. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a previous OpenAI employee, estimated AGI by 2027 to be "noticeably possible". [115]
Whole brain emulation
While the development of transformer designs like in ChatGPT is considered the most promising path to AGI, [116] [117] whole brain emulation can act as an alternative approach. With entire brain simulation, a brain design is developed by scanning and mapping a biological brain in detail, and then copying and simulating it on a computer system or another computational gadget. The simulation design need to be adequately loyal to the original, so that it behaves in virtually the same method as the initial brain. [118] Whole brain emulation is a type of brain simulation that is talked about in computational neuroscience and neuroinformatics, and for medical research study purposes. It has been gone over in artificial intelligence research study [103] as a technique to strong AI. Neuroimaging technologies that might deliver the essential comprehensive understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of adequate quality will end up being readily available on a similar timescale to the computing power required to emulate it.
Early estimates
For low-level brain simulation, a very effective cluster of computers or GPUs would be needed, offered the enormous quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by adulthood. Estimates differ for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based on a simple switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at different quotes for the hardware required to equate to the human brain and adopted a figure of 1016 computations per second (cps). [e] (For comparison, if a "calculation" was comparable to one "floating-point operation" - a measure utilized to rate existing supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, accomplished in 2011, while 1018 was achieved in 2022.) He used this figure to forecast the needed hardware would be offered sometime in between 2015 and 2025, if the exponential development in computer power at the time of writing continued.
Current research study
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has actually developed an especially detailed and openly available atlas of the human brain. [124] In 2023, researchers from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The synthetic neuron model presumed by Kurzweil and utilized in numerous present artificial neural network executions is basic compared with biological neurons. A brain simulation would likely need to capture the detailed cellular behaviour of biological nerve cells, presently understood only in broad summary. The overhead introduced by complete modeling of the biological, chemical, and physical information of neural behaviour (particularly on a molecular scale) would need computational powers numerous orders of magnitude bigger than Kurzweil's quote. In addition, the estimates do not account for glial cells, which are understood to contribute in cognitive processes. [125]
A fundamental criticism of the simulated brain approach originates from embodied cognition theory which asserts that human embodiment is a vital aspect of human intelligence and is essential to ground significance. [126] [127] If this theory is correct, any fully functional brain model will need to include more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as a choice, but it is unknown whether this would suffice.
Philosophical point of view
"Strong AI" as defined in philosophy
In 1980, philosopher John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference in between two hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "consciousness". Weak AI hypothesis: An artificial intelligence system can (only) imitate it thinks and has a mind and awareness.
The first one he called "strong" due to the fact that it makes a more powerful declaration: it presumes something special has actually occurred to the maker that surpasses those capabilities that we can test. The behaviour of a "weak AI" device would be exactly identical to a "strong AI" device, however the latter would likewise have subjective conscious experience. This use is likewise typical in scholastic AI research study and books. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil use the term "strong AI" to mean "human level artificial basic intelligence". [102] This is not the like Searle's strong AI, unless it is presumed that awareness is essential for human-level AGI. Academic philosophers such as Searle do not believe that is the case, and to most synthetic intelligence researchers the question is out-of-scope. [130]
Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it genuine or a simulation." [130] If the program can behave as if it has a mind, then there is no requirement to understand if it really has mind - undoubtedly, there would be no method to inform. For AI research study, Searle's "weak AI hypothesis" is comparable to the statement "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for given, and do not care about the strong AI hypothesis." [130] Thus, for scholastic AI research study, "Strong AI" and "AGI" are 2 different things.
Consciousness
Consciousness can have different significances, and some elements play significant functions in sci-fi and the principles of expert system:
Sentience (or "incredible awareness"): The capability to "feel" perceptions or emotions subjectively, as opposed to the ability to factor about understandings. Some philosophers, such as David Chalmers, use the term "awareness" to refer specifically to extraordinary awareness, which is roughly comparable to sentience. [132] Determining why and how subjective experience emerges is called the tough issue of consciousness. [133] Thomas Nagel discussed in 1974 that it "seems like" something to be conscious. If we are not conscious, then it doesn't seem like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are not likely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer declared that the business's AI chatbot, LaMDA, had actually achieved life, though this claim was extensively challenged by other professionals. [135]
Self-awareness: To have conscious awareness of oneself as a different person, particularly to be purposely conscious of one's own thoughts. This is opposed to simply being the "subject of one's thought"-an operating system or debugger has the ability to be "familiar with itself" (that is, to represent itself in the same way it represents whatever else)-however this is not what individuals typically imply when they utilize the term "self-awareness". [g]
These qualities have a moral dimension. AI life would generate issues of welfare and legal security, similarly to animals. [136] Other aspects of consciousness related to cognitive abilities are likewise relevant to the concept of AI rights. [137] Finding out how to incorporate sophisticated AI with existing legal and social frameworks is an emerging concern. [138]
Benefits
AGI might have a wide range of applications. If oriented towards such goals, AGI might assist mitigate different issues worldwide such as cravings, poverty and health issues. [139]
AGI could improve efficiency and efficiency in most jobs. For instance, in public health, AGI might speed up medical research, significantly against cancer. [140] It could take care of the senior, [141] and democratize access to quick, premium medical diagnostics. It might offer fun, cheap and personalized education. [141] The requirement to work to subsist could end up being outdated if the wealth produced is properly redistributed. [141] [142] This likewise raises the concern of the place of human beings in a radically automated society.
AGI could likewise help to make logical decisions, and to anticipate and avoid catastrophes. It could likewise help to profit of possibly devastating innovations such as nanotechnology or environment engineering, while avoiding the associated threats. [143] If an AGI's primary objective is to prevent existential disasters such as human extinction (which could be challenging if the Vulnerable World Hypothesis turns out to be true), [144] it might take measures to drastically decrease the risks [143] while minimizing the impact of these steps on our quality of life.
Risks
Existential risks
AGI may represent numerous kinds of existential risk, which are dangers that threaten "the premature extinction of Earth-originating smart life or the irreversible and drastic damage of its capacity for preferable future development". [145] The danger of human termination from AGI has been the topic of lots of debates, but there is likewise the possibility that the advancement of AGI would cause a permanently problematic future. Notably, it might be used to spread and protect the set of worths of whoever establishes it. If humankind still has ethical blind spots comparable to slavery in the past, AGI might irreversibly entrench it, avoiding ethical progress. [146] Furthermore, AGI could assist in mass surveillance and brainwashing, which might be used to develop a stable repressive worldwide totalitarian routine. [147] [148] There is also a danger for the machines themselves. If devices that are sentient or otherwise worthwhile of ethical consideration are mass created in the future, engaging in a civilizational path that indefinitely ignores their well-being and interests could be an existential catastrophe. [149] [150] Considering how much AGI could improve mankind's future and help in reducing other existential dangers, Toby Ord calls these existential risks "an argument for proceeding with due caution", not for "abandoning AI". [147]
Risk of loss of control and human extinction
The thesis that AI poses an existential danger for humans, and that this risk needs more attention, is controversial but has been endorsed in 2023 by numerous public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized widespread indifference:
So, facing possible futures of enormous benefits and risks, the specialists are certainly doing everything possible to make sure the very best outcome, right? Wrong. If an exceptional alien civilisation sent us a message stating, 'We'll arrive in a few years,' would we just reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]
The possible fate of humanity has actually sometimes been compared to the fate of gorillas threatened by human activities. The contrast states that higher intelligence enabled humankind to dominate gorillas, which are now vulnerable in ways that they might not have prepared for. As a result, the gorilla has actually ended up being a threatened types, not out of malice, however just as a civilian casualties from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to control mankind and that we need to beware not to anthropomorphize them and analyze their intents as we would for people. He stated that individuals won't be "smart sufficient to develop super-intelligent devices, yet unbelievably dumb to the point of providing it moronic goals with no safeguards". [155] On the other side, the principle of instrumental merging suggests that almost whatever their objectives, smart representatives will have reasons to attempt to make it through and acquire more power as intermediary actions to attaining these goals. And that this does not require having emotions. [156]
Many scholars who are concerned about existential risk supporter for more research study into fixing the "control issue" to address the question: what kinds of safeguards, algorithms, or architectures can developers carry out to maximise the likelihood that their recursively-improving AI would continue to act in a friendly, instead of harmful, manner after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which could result in a race to the bottom of safety preventative measures in order to release products before competitors), [159] and using AI in weapon systems. [160]
The thesis that AI can present existential risk likewise has critics. Skeptics generally say that AGI is unlikely in the short-term, or that issues about AGI distract from other problems related to existing AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for lots of people beyond the innovation industry, existing chatbots and LLMs are currently perceived as though they were AGI, causing additional misunderstanding and fear. [162]
Skeptics often charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence changing an irrational belief in an omnipotent God. [163] Some researchers think that the interaction campaigns on AI existential threat by particular AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulatory capture and to pump up interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other industry leaders and researchers, released a joint statement asserting that "Mitigating the risk of termination from AI must be a global top priority along with other societal-scale threats such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI estimated that "80% of the U.S. workforce could have at least 10% of their work jobs impacted by the intro of LLMs, while around 19% of employees may see at least 50% of their tasks affected". [166] [167] They think about office workers to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI could have a better autonomy, capability to make choices, to user interface with other computer system tools, however also to manage robotized bodies.
According to Stephen Hawking, the outcome of automation on the quality of life will depend upon how the wealth will be redistributed: [142]
Everyone can enjoy a life of luxurious leisure if the machine-produced wealth is shared, or the majority of people can end up badly poor if the machine-owners successfully lobby versus wealth redistribution. Up until now, the pattern appears to be towards the 2nd alternative, with technology driving ever-increasing inequality
Elon Musk considers that the automation of society will require federal governments to embrace a universal fundamental earnings. [168]
See also
Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain AI effect AI safety - Research area on making AI safe and advantageous AI alignment - AI conformance to the intended goal A.I. Rising - 2018 film directed by Lazar Bodroža Artificial intelligence Automated maker learning - Process of automating the application of machine learning BRAIN Initiative - Collaborative public-private research initiative revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General video game playing - Ability of artificial intelligence to play various games Generative expert system - AI system capable of generating content in action to prompts Human Brain Project - Scientific research job Intelligence amplification - Use of info technology to enhance human intelligence (IA). Machine ethics - Moral behaviours of man-made devices. Moravec's paradox. Multi-task knowing - Solving several maker finding out tasks at the same time. Neural scaling law - Statistical law in artificial intelligence. Outline of expert system - Overview of and topical guide to synthetic intelligence. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or kind of expert system. Transfer knowing - Artificial intelligence method. Loebner Prize - Annual AI competition. Hardware for expert system - Hardware specifically designed and optimized for synthetic intelligence. Weak artificial intelligence - Form of synthetic intelligence.
Notes
^ a b See below for the origin of the term "strong AI", and see the academic meaning of "strong AI" and weak AI in the short article Chinese room. ^ AI founder John McCarthy composes: "we can not yet characterize in general what kinds of computational treatments we desire to call smart. " [26] (For a discussion of some meanings of intelligence used by expert system researchers, see philosophy of expert system.). ^ The Lighthill report specifically slammed AI's "grand goals" and led the dismantling of AI research in England. [55] In the U.S., DARPA ended up being identified to money only "mission-oriented direct research study, rather than fundamental undirected research study". [56] [57] ^ As AI founder John McCarthy writes "it would be a great relief to the remainder of the workers in AI if the innovators of brand-new general formalisms would express their hopes in a more guarded form than has sometimes been the case." [61] ^ In "Mind Children" [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately correspond to 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil introduced. ^ As defined in a basic AI book: "The assertion that makers could possibly act wisely (or, possibly better, act as if they were smart) is called the 'weak AI' hypothesis by philosophers, and the assertion that makers that do so are in fact believing (as opposed to simulating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to carry out a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to make sure that synthetic general intelligence advantages all of humankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is producing artificial general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were identified as being active in 2020. ^ a b c "AI timelines: What do professionals in expert system expect for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI pioneer Geoffrey Hinton quits Google and warns of threat ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can avoid the bad actors from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals sparks of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change modifications you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York City Times. The genuine hazard is not AI itself however the method we release it. ^ "Impressed by expert system? Experts state AGI is following, and it has 'existential' risks". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could present existential threats to humankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last innovation that mankind needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the danger of termination from AI ought to be an international concern. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals warn of danger of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from creating devices that can outthink us in general methods. ^ LeCun, Yann (June 2023). "AGI does not provide an existential threat". Medium. There is no factor to fear AI as an existential threat. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil explains strong AI as "maker intelligence with the complete variety of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is changing our world - it is on all of us to ensure that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent qualities is based upon the topics covered by significant AI textbooks, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the method we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reevaluated: The principle of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reevaluated: The principle of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a genuine young boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists challenge whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar test to AP . Here's a list of tough exams both AI variations have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is outdated. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended testing an AI chatbot's ability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 estimated in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software engineers avoided the term expert system for worry of being considered as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who coined the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of machine intelligence: Despite progress in machine intelligence, artificial basic intelligence is still a significant obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not turn into a Frankenstein's beast". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general expert system will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or botdb.win destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in synthetic intelligence: A study of expert opinion. In Fundamental problems of expert system (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as smart as Siri - however a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're entering the AI golden zone between narrow and basic AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are currently seeing an early example of an AGI system in the just recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is arguable, however the agreement is that it is not AGI. ... If absolutely nothing else, GPT-3 informs us there is a happy medium between narrow and basic AI. ^ Quach, Katyanna. "A developer built an AI chatbot utilizing GPT-3 that helped a male speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can perform over 600 tasks, from playing games to controlling robots", TechCrunch, archived from the original on 16 June 2022, obtained 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could equal human intelligence in 'simply a few years,' says CEO of Google's main A.I. research study lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI might pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone seems to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study job maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A large range of views in present research study, all of which need grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer may become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For instance: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced estimate in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (quoted in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for interest by the field about why a program behaves the way it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the business's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the cost surpass benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Benefit from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, threats, techniques (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York City, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that human beings will destroy ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security danger' to Australia, Senate query states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the implications of expert system - but are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The fascinating Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI". The fascinating Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to catastrophic AGI danger: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report alerts". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over danger presented however synthetic intelligence can not be ignored". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring fears over AI, warn researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder says huge tech is lying about AI extinction danger". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early appearance at the labor market effect potential of big language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of employees could see their jobs affected by AI. These are the tasks most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we need universal fundamental earnings because 'in the future, manual labor will be an option'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Look For Expert System. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial basic intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, obtained 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, obtained 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Perspective, archived from the original on 17 August 2007, obtained 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Expert System: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The ultimate effort is to make computer programs that can solve issues and attain goals on the planet along with humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, recovered 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, obtained 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York: Oxford University Press, archived from the initial on 25 July 2009, obtained 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, retrieved 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, retrieved 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - by means of ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, recovered 4 September 2013 - through ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, obtained 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what might be called "Dyson's Law") that "Any system easy sufficient to be easy to understand will not be made complex enough to act wisely, while any system complicated enough to act wisely will be too complicated to comprehend." (p. 197.) Computer researcher Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead easy foolish. They work, however they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, retrieved 25 July 2010. Gleick, James, "The Fate of Free Will" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what differentiates us from machines. For biological animals, reason and function originate from acting worldwide and experiencing the effects. Expert systems - disembodied, strangers to blood, sweat, code.snapstream.com and tears - have no celebration for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably expect that those who wish to get abundant from AI are going to have the interests of the rest people close at heart,' ... writes [Gary Marcus] 'We can't rely on governments driven by campaign finance contributions [from tech companies] to push back.' ... Marcus details the demands that citizens must make of their federal governments and the tech business. They include openness on how AI systems work; compensation for people if their information [are] utilized to train LLMs (large language design) s and the right to grant this use; and the ability to hold tech business liable for the damages they trigger by removing Section 230, enforcing money penalites, and passing more stringent item liability laws ... Marcus likewise recommends ... that a new, AI-specific federal firm, akin to the FDA, the FCC, or the FTC, might offer the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... suggests ... establish [ing] a professional licensing routine for engineers that would operate in a similar method to medical licenses, malpractice matches, and the Hippocratic oath in medicine. 'What if, like physicians,' she asks ..., 'AI engineers also vowed to do no damage?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually stymied people for years, exposes the constraints of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competitors has actually exposed that although NLP (natural-language processing) models can unbelievable tasks, their capabilities are really much limited by the quantity of context they get. This [...] might cause [difficulties] for scientists who wish to use them to do things such as evaluate ancient languages. In many cases, there are couple of historical records on long-gone civilizations to act as training data for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to produce fake videos equivalent from real ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we indicate reasonable videos produced utilizing expert system that really deceive individuals, then they barely exist. The phonies aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in basic, operating in our media as counterfeited evidence. Their role better resembles that of animations, especially smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We should avoid humanizing machine-learning models utilized in clinical research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a machine a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the most recent, buzziest systems of synthetic general intelligence are stymmied by the very same old issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, obtained 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, provided and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead police to disregard contradictory evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: forum.altaycoins.com ChatGPT aced a [basic intelligence] test but revealed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at jobs that require real humanlike reasoning or an understanding of the physical and social world ... ChatGPT seemed not able to factor realistically and attempted to depend on its huge database of ... realities obtained from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are powerful however unreliable. Rules-based systems can not handle situations their programmers did not expect. Learning systems are limited by the data on which they were trained. AI failures have already led to tragedy. Advanced autopilot functions in cars, although they carry out well in some situations, have actually driven vehicles without warning into trucks, concrete barriers, and parked automobiles. In the wrong scenario, AI systems go from supersmart to superdumb in an instant. When an enemy is trying to manipulate and hack an AI system, the dangers are even higher." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by new technologies however count on the timelelss human tendency to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.