DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, in addition to the distilled versions varying from 1.5 to 70 billion specifications to develop, experiment, and responsibly scale your generative AI ideas on AWS.
In this post, we show how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to deploy the distilled variations of the designs as well.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that uses support discovering to enhance reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base foundation. An essential differentiating feature is its reinforcement learning (RL) step, which was utilized to fine-tune the design's responses beyond the standard pre-training and fine-tuning procedure. By incorporating RL, DeepSeek-R1 can adapt better to user feedback and goals, eventually improving both importance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) approach, suggesting it's geared up to break down complex inquiries and reason through them in a detailed way. This guided reasoning procedure permits the model to produce more accurate, transparent, and detailed answers. This design integrates RL-based fine-tuning with CoT abilities, aiming to create structured responses while focusing on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has actually caught the market's attention as a versatile text-generation model that can be integrated into different workflows such as agents, rational thinking and information interpretation tasks.
DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture permits activation of 37 billion parameters, enabling efficient inference by routing inquiries to the most appropriate expert "clusters." This approach enables the design to focus on different problem domains while maintaining overall effectiveness. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge instance to deploy the design. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the reasoning of the main R1 model to more effective architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more effective designs to simulate the habits and thinking patterns of the bigger DeepSeek-R1 model, utilizing it as a teacher design.
You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend releasing this model with guardrails in place. In this blog, we will utilize Amazon Bedrock Guardrails to introduce safeguards, prevent harmful content, and examine models against key security requirements. At the time of composing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce numerous guardrails tailored to different use cases and use them to the DeepSeek-R1 design, enhancing user experiences and standardizing security controls across your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 design, you need access to an ml.p5e instance. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and confirm you're utilizing ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To ask for a limit boost, develop a limit increase request and reach out to your account team.
Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) consents to use Amazon Bedrock Guardrails. For guidelines, see Establish permissions to utilize guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails allows you to introduce safeguards, prevent hazardous content, and examine designs against crucial security requirements. You can carry out precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This enables you to apply guardrails to examine user inputs and model actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.
The basic circulation includes the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for inference. After getting the design's output, another guardrail check is used. If the output passes this final check, it's returned as the final result. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following sections demonstrate inference using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:
1. On the Amazon Bedrock console, pick Model catalog under Foundation models in the navigation pane.
At the time of composing this post, you can utilize the InvokeModel API to invoke the model. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a company and choose the DeepSeek-R1 model.
The design detail page offers essential details about the design's abilities, pricing structure, and application standards. You can find detailed usage guidelines, consisting of sample API calls and code bits for combination. The design supports various text generation tasks, consisting of material creation, code generation, and question answering, utilizing its reinforcement discovering optimization and CoT thinking abilities.
The page also includes deployment options and licensing details to help you start with DeepSeek-R1 in your applications.
3. To start utilizing DeepSeek-R1, pick Deploy.
You will be prompted to configure the deployment details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters).
5. For Variety of instances, get in a number of instances (in between 1-100).
6. For Instance type, select your circumstances type. For optimum performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised.
Optionally, you can set up advanced security and infrastructure settings, consisting of virtual private cloud (VPC) networking, service function authorizations, and file encryption settings. For higgledy-piggledy.xyz many utilize cases, the default settings will work well. However, for production deployments, you might wish to evaluate these settings to line up with your organization's security and compliance requirements.
7. Choose Deploy to begin using the design.
When the implementation is total, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock play area.
8. Choose Open in play area to access an interactive interface where you can try out various triggers and change design specifications like temperature and maximum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for ideal outcomes. For instance, content for inference.
This is an exceptional way to explore the model's reasoning and text generation abilities before integrating it into your applications. The play area provides instant feedback, helping you understand how the model reacts to various inputs and letting you tweak your triggers for optimal outcomes.
You can quickly evaluate the design in the playground through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run inference utilizing guardrails with the deployed DeepSeek-R1 endpoint
The following code example demonstrates how to perform reasoning using a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have actually created the guardrail, utilize the following code to carry out guardrails. The script initializes the bedrock_runtime customer, configures inference specifications, and sends out a demand to create text based on a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML services that you can release with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your information, and release them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart uses 2 convenient approaches: utilizing the instinctive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both approaches to assist you select the technique that best suits your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to deploy DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be triggered to produce a domain.
3. On the SageMaker Studio console, select JumpStart in the navigation pane.
The design web browser shows available designs, with details like the provider name and model abilities.
4. Look for DeepSeek-R1 to see the DeepSeek-R1 design card.
Each design card shows essential details, consisting of:
- Model name
- Provider name
- Task classification (for instance, Text Generation).
Bedrock Ready badge (if suitable), indicating that this design can be registered with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to invoke the design
5. Choose the model card to view the model details page.
The model details page consists of the following details:
- The design name and company details. Deploy button to release the model. About and Notebooks tabs with detailed details
The About tab includes crucial details, such as:
- Model description. - License details.
- Technical specifications.
- Usage standards
Before you deploy the design, it's suggested to examine the model details and license terms to confirm compatibility with your use case.
6. Choose Deploy to continue with implementation.
7. For Endpoint name, utilize the instantly generated name or produce a customized one.
- For example type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
- For Initial instance count, go into the variety of instances (default: 1). Selecting proper circumstances types and counts is essential for expense and efficiency optimization. Monitor your implementation to adjust these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is enhanced for sustained traffic and low latency.
- Review all configurations for accuracy. For this model, we highly recommend adhering to SageMaker JumpStart default settings and making certain that network isolation remains in place.
- Choose Deploy to release the model.
The release process can take several minutes to complete.
When deployment is total, your endpoint status will change to InService. At this moment, the design is all set to accept inference requests through the endpoint. You can keep track of the implementation progress on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the release is total, you can conjure up the model utilizing a SageMaker runtime customer and integrate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the needed AWS permissions and environment setup. The following is a detailed code example that demonstrates how to deploy and utilize DeepSeek-R1 for inference programmatically. The code for deploying the design is offered in the Github here. You can clone the notebook and run from SageMaker Studio.
You can run additional demands against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and implement it as displayed in the following code:
Tidy up
To prevent undesirable charges, complete the actions in this section to tidy up your resources.
Delete the Amazon Bedrock Marketplace deployment
If you released the model using Amazon Bedrock Marketplace, total the following actions:
1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace releases. - In the Managed releases section, locate the endpoint you want to erase.
- Select the endpoint, and on the Actions menu, choose Delete.
- Verify the endpoint details to make certain you're deleting the right deployment: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and release the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business construct innovative solutions using AWS services and accelerated compute. Currently, he is focused on establishing techniques for fine-tuning and optimizing the inference efficiency of big language models. In his spare time, Vivek enjoys treking, viewing movies, and attempting different foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads item, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about developing solutions that assist clients accelerate their AI journey and unlock business worth.